High-density lipoprotein (HDL) metabolism and bone mass
- 1Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras Medical School, Patras, Greece
- 2Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- 3Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
- 4Department of Pharmacology, University of Patras Medical School, Patras, Greece
- Correspondence should be addressed to D J Papachristou; Email: papachristoudj{at}med.upatras.gr
Abstract
It is well appreciated that high-density lipoprotein (HDL) and bone physiology and pathology are tightly linked. Studies, primarily in mouse models, have shown that dysfunctional and/or disturbed HDL can affect bone mass through many different ways. Specifically, reduced HDL levels have been associated with the development of an inflammatory microenvironment that affects the differentiation and function of osteoblasts. In addition, perturbation in metabolic pathways of HDL favors adipoblastic differentiation and restrains osteoblastic differentiation through, among others, the modification of specific bone-related chemokines and signaling cascades. Increased bone marrow adiposity also deteriorates bone osteoblastic function and thus bone synthesis, leading to reduced bone mass. In this review, we present the current knowledge and the future directions with regard to the HDL–bone mass connection. Unraveling the molecular phenomena that underline this connection will promote the deeper understanding of the pathophysiology of bone-related pathologies, such as osteoporosis or bone metastasis, and pave the way toward the development of novel and more effective therapies against these conditions.
- Received 16 February 2017
- Accepted 17 March 2017
- Made available online as an Accepted Preprint 17 March 2017
- © 2017 Society for Endocrinology