Contributions of the N- and C-terminal domains of IGF binding protein-6 to IGF binding
- 1University of Melbourne, Department of Medicine, Austin Hospital, Heidelberg 3084, Australia
- 2The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Australia
- (Requests for offprints should be addressed to L A Bach; Email: l.bach{at}unimelb.edu.au)
Abstract
Insulin-like growth factors IGF-I and IGF -II are important mediators of growth. A family of six high affinity IGF binding proteins (IGFBPs) modulate IGF action. IGFBPs have three domains, of which the N- and C-domains are involved in high affinity IGF binding. IGFBP-6 is unique in its 20–100-fold IGF-II binding specificity over IGF-I. The aim of this study was to determine the contributions of the N- and C-domains of IGFBP-6 to its IGF binding properties. We confirmed that differential dissociation kinetics are responsible for the IGF-II binding preference of IGFBP-6. The N-domain has rapid association kinetics, similar to full-length IGFBP-6, but both IGF-I and -II dissociate rapidly from this domain, thereby reducing its binding affinity for IGF-II ~50-fold. However, the N-domain binds IGF-I and -II with similar affinities and it has a similar IGF-I binding affinity to full-length IGFBP-6. This suggests that the C-domain confers the IGF-II binding preference of IGFBP-6; indeed, IGF-I bound inconsistently with very low affinity to the C-domain. Coincubation studies showed that isolated N- and C-domains of IGFBP-6 do not strongly cooperate to enhance IGF binding. The results of the binding studies are supported by the effects of the IGFBP-6 domains on IGF-induced colon cancer cell proliferation; the N-domain inhibited IGF-II induced proliferation with ~20-fold lower potency than IGFBP-6 and it was equipotent in inhibiting IGF-I- and IGF-II-induced proliferation. Coincubation of C-domain had no additional effect on N-domain-induced inhibition of proliferation. In conclusion, both the N- and C-domains of IGFBP-6 are involved in IGF binding, the C-domain is responsible for the IGF-II binding preference of IGFBP-6 and intact IGFBP-6 is necessary for high affinity IGF binding.
- Received 26 May 2004
- Accepted 14 July 2004
- Made available online as an Accepted Preprint 27 July 2004
- © 2004 Society for Endocrinology