JOE
HOME HELP CONTACT US SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
 QUICK SEARCH:   [advanced]


     


Journal of Endocrinology (2009) 200, 245-258       DOI: 10.1677/JOE-08-0447
© 2009 Society for Endocrinology
This Article
Right arrow Full Text
Right arrow Full Text (PDF)
Right arrow All Versions of this Article:
JOE-08-0447v1
200/3/245    most recent
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Citing Articles
Right arrow Citing Articles via Web of Science (1)
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Alatzoglou, K. S
Right arrow Articles by Dattani, M. T
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Alatzoglou, K. S
Right arrow Articles by Dattani, M. T

REVIEW

The role of SOX proteins in normal pituitary development

Kyriaki S Alatzoglou, Daniel Kelberman and Mehul T Dattani

Clinical and Academic Lead in Endocrinology, Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK

(Correspondence should be addressed to M T Dattani; Email: m.dattani{at}ich.ucl.ac.uk)

Pituitary development is a complex process that depends on the co-ordinated spatial and temporal expression of transcription factors and signalling molecules that culminates in the formation of a complex organ that secretes six hormones from five different cell types. Given the fact that all distinct hormone producing cells arise from a common ectodermal primordium, the patterning, architecture and plasticity of the gland is impressive. Among the transcription factors involved in the early steps of pituitary organogenesis are SOX2 and SOX3, members of the SOX family that are emerging as key players in many developmental processes. Studies in vitro and in vivo in transgenic animal models have helped to elucidate their expression patterns and roles in the developing hypothalamo-pituitary region. It has been demonstrated that they may be involved in pituitary development either directly, through shaping of Rathke's pouch, or indirectly affecting signalling from the diencephalon. Their role has been further underlined by the pleiotropic effects of their mutations in humans that range from isolated hormone deficiencies to panhypopituitarism and developmental abnormalities affecting many organ systems. However, the exact mechanism of action of SOX proteins, their downstream targets and their interplay within the extensive network that regulates pituitary development is still the subject of a growing number of studies. The elucidation of their role is crucial for the understanding of a number of processes that range from developmental mechanisms to disease phenotypes and tumorigenesis.







HOME HELP CONTACT US SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Copyright © 2009 by the Society for Endocrinology.