|
|
||||||||
Articles |
Prolactin, growth hormone and placental lactogen are members of a family of polypeptide hormones which share structural similarities and biological activities. Numerous functions have been attributed to these hormones, among which stand out their recently discovered effects on angiogenesis, the process by which new blood vessels are formed from the pre-existing microvasculature. Prolactin, growth hormone and placental lactogen, along with two non-classical members of the family, proliferin and proliferin-related protein, can act both as circulating hormones and as paracrine/autocrine factors to either stimulate or inhibit various stages of the formation and remodeling of new blood vessels, including endothelial cell proliferation, migration, protease production and apoptosis. Such opposing actions can reside in similar but independent molecules, as is the case of proliferin and proliferin-related protein, which stimulate and inhibit angiogenesis respectively. The potential to exert opposing effects on angiogenesis can also reside within the same molecule as the parent protein can promote angiogenesis (i.e. prolactin, growth hormone and placental lactogen), but after proteolytic processing the resulting peptide fragment acquires anti-angiogenic properties (i.e. 16 kDa prolactin, 16 kDa growth hormone and 16 kDa placental lactogen). The unique properties of the peptide fragments versus the full-length molecules, the regulation of the protease responsible for specific protein cleavage, the selective expression of specific receptors and their associated signal transduction pathways are issues that are being investigated to further establish the precise contribution of these hormones to angiogenesis under both physiological and pathological situations. In this review article, we summarize the known and speculative issues underlying the effects of the prolactin, growth hormone and placental lactogen family of proteins on angiogenesis, and address important remaining enigmas in this field of research.
This article has been cited by other articles:
|
K. Mitchell, C. Szekeres, V. Milano, K. B. Svenson, M. Nilsen-Hamilton, J. A. Kreidberg, and C. M. DiPersio {alpha}3{beta}1 integrin in epidermis promotes wound angiogenesis and keratinocyte-to-endothelial-cell crosstalk through the induction of MRP3 J. Cell Sci., June 1, 2009; 122(11): 1778 - 1787. [Abstract] [Full Text] [PDF] |
||||
|
G. Bonuccelli, M. C. Casimiro, F. Sotgia, C. Wang, M. Liu, S. Katiyar, J. Zhou, E. Dew, F. Capozza, K. M. Daumer, et al. Caveolin-1 (P132L), a Common Breast Cancer Mutation, Confers Mammary Cell Invasiveness and Defines a Novel Stem Cell/Metastasis-Associated Gene Signature Am. J. Pathol., May 1, 2009; 174(5): 1650 - 1662. [Abstract] [Full Text] [PDF] |
||||
|
S. E. Brunet-Dunand, C. Vouyovitch, S. Araneda, V. Pandey, L. J.-P. Vidal, C. Print, H. C. Mertani, P. E. Lobie, and J. K. Perry Autocrine Human Growth Hormone Promotes Tumor Angiogenesis in Mammary Carcinoma Endocrinology, March 1, 2009; 150(3): 1341 - 1352. [Abstract] [Full Text] [PDF] |
||||
|
C. Clapp, S. Thebault, E. Arnold, C. Garcia, J. C. Rivera, and G. M. de la Escalera Vasoinhibins: novel inhibitors of ocular angiogenesis Am J Physiol Endocrinol Metab, October 1, 2008; 295(4): E772 - E778. [Abstract] [Full Text] [PDF] |
||||
|
O. Forster, D. Hilfiker-Kleiner, A. A. Ansari, J. B. Sundstrom, E. Libhaber, W. Tshani, A. Becker, A. Yip, G. Klein, and K. Sliwa Reversal of IFN-{gamma}, oxLDL and prolactin serum levels correlate with clinical improvement in patients with peripartum cardiomyopathy Eur J Heart Fail, September 1, 2008; 10(9): 861 - 868. [Abstract] [Full Text] [PDF] |
||||
|
R. Castino, S. Delpal, E. Bouguyon, M. Demoz, C. Isidoro, and M. Ollivier-Bousquet Prolactin Promotes the Secretion of Active Cathepsin D at the Basal Side of Rat Mammary Acini Endocrinology, August 1, 2008; 149(8): 4095 - 4105. [Abstract] [Full Text] [PDF] |
||||
|
A. Leanos-Miranda, J. Marquez-Acosta, G. M. Cardenas-Mondragon, Z. L. Chinolla-Arellano, R. Rivera-Leanos, S. Bermejo-Huerta, J. F. Romero-Arauz, G. Alvarez-Jimenez, J. C. Ramos-Leon, and A. Ulloa-Aguirre Urinary Prolactin as a Reliable Marker for Preeclampsia, Its Severity, and the Occurrence of Adverse Pregnancy Outcomes J. Clin. Endocrinol. Metab., July 1, 2008; 93(7): 2492 - 2499. [Abstract] [Full Text] [PDF] |
||||
|
J. Kzhyshkowska, A. Gratchev, C. Schmuttermaier, H. Brundiers, L. Krusell, S. Mamidi, J. Zhang, G. Workman, E. H. Sage, C. Anderle, et al. Alternatively Activated Macrophages Regulate Extracellular Levels of the Hormone Placental Lactogen via Receptor-Mediated Uptake and Transcytosis J. Immunol., March 1, 2008; 180(5): 3028 - 3037. [Abstract] [Full Text] [PDF] |
||||
|
D. Hilfiker-Kleiner, G. P. Meyer, E. Schieffer, B. Goldmann, E. Podewski, I. Struman, P. Fischer, and H. Drexler Recovery From Postpartum Cardiomyopathy in 2 Patients by Blocking Prolactin Release With Bromocriptine J. Am. Coll. Cardiol., December 11, 2007; 50(24): 2354 - 2355. [Full Text] [PDF] |
||||
|
S.-H. Lee, J. Kunz, S.-H. Lin, and L.-y. Yu-Lee 16-kDa Prolactin Inhibits Endothelial Cell Migration by Down-Regulating the Ras-Tiam1-Rac1-Pak1 Signaling Pathway Cancer Res., November 15, 2007; 67(22): 11045 - 11053. [Abstract] [Full Text] [PDF] |
||||
|
S. Erdmann, A. Ricken, C. Merkwitz, I. Struman, R. Castino, K. Hummitzsch, F. Gaunitz, C. Isidoro, J. Martial, and K. Spanel-Borowski The expression of prolactin and its cathepsin D-mediated cleavage in the bovine corpus luteum vary with the estrous cycle Am J Physiol Endocrinol Metab, November 1, 2007; 293(5): E1365 - E1377. [Abstract] [Full Text] [PDF] |
||||
|
J. Y. Kim, Y. Wu, and C. M. Smas Characterization of ScAP-23, a new cell line from murine subcutaneous adipose tissue, identifies genes for the molecular definition of preadipocytes Physiol Genomics, October 19, 2007; 31(2): 328 - 342. [Abstract] [Full Text] [PDF] |
||||
|
G. Ge, C. A. Fernandez, M. A. Moses, and D. S. Greenspan Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor PNAS, June 12, 2007; 104(24): 10010 - 10015. [Abstract] [Full Text] [PDF] |
||||
|
C. Stocco, C. Telleria, and G. Gibori The Molecular Control of Corpus Luteum Formation, Function, and Regression Endocr. Rev., February 1, 2007; 28(1): 117 - 149. [Abstract] [Full Text] [PDF] |
||||
|
D. Piwnica, I. Fernandez, N. Binart, P. Touraine, P. A. Kelly, and V. Goffin A New Mechanism for Prolactin Processing into 16K PRL by Secreted Cathepsin D Mol. Endocrinol., December 1, 2006; 20(12): 3263 - 3278. [Abstract] [Full Text] [PDF] |
||||
|
E. K. Ueda, H.-L. Lo, P. Bartolini, and A. M. Walker S179D Prolactin Primarily Uses the Extrinsic Pathway and Mitogen-Activated Protein Kinase Signaling to Induce Apoptosis in Human Endothelial Cells Endocrinology, October 1, 2006; 147(10): 4627 - 4637. [Abstract] [Full Text] [PDF] |
||||
|
C Zermeno, J Guzman-Morales, Y Macotela, G Nava, F Lopez-Barrera, J B Kouri, C Lavalle, G M. de la Escalera, and C Clapp Prolactin inhibits the apoptosis of chondrocytes induced by serum starvation. J. Endocrinol., May 1, 2006; 189(2): R1 - R8. [Abstract] [Full Text] [PDF] |
||||
|
Y. Macotela, M. B. Aguilar, J. Guzman-Morales, J. C. Rivera, C. Zermeno, F. Lopez-Barrera, G. Nava, C. Lavalle, G. M. de la Escalera, and C. Clapp Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin J. Cell Sci., May 1, 2006; 119(9): 1790 - 1800. [Abstract] [Full Text] [PDF] |
||||
|
C. Molinari, E. Grossini, D. A. S. G. Mary, F. Ribichini, N. Surico, and G. Vacca The role of nitric oxide in the peripheral vasoconstriction caused by human placental lactogen in anaesthetized pigs Exp Physiol, May 1, 2006; 91(3): 603 - 610. [Abstract] [Full Text] [PDF] |
||||
|
M. Bertolini, C. R Wallace, and G. B Anderson Expression profile and protein levels of placental products as indirect measures of placental function in in vitro-derived bovine pregnancies Reproduction, January 1, 2006; 131(1): 163 - 173. [Abstract] [Full Text] [PDF] |
||||
|
C. A. Blake and S. M. Helmke Proteomics of the Anterior Pituitary Gland as a Model for Studying the Physiology of a Heterogeneous Organ Experimental Biology and Medicine, December 1, 2005; 230(11): 793 - 799. [Abstract] [Full Text] [PDF] |
||||
|
J. Aranda, J. C. Rivera, M. C. Jeziorski, J. Riesgo-Escovar, G. Nava, F. Lopez-Barrera, H. Quiroz-Mercado, P. Berger, G. Martinez de la Escalera, and C. Clapp Prolactins Are Natural Inhibitors of Angiogenesis in the Retina Invest. Ophthalmol. Vis. Sci., August 1, 2005; 46(8): 2947 - 2953. [Abstract] [Full Text] [PDF] |
||||
|
P. Nyberg, L. Xie, and R. Kalluri Endogenous Inhibitors of Angiogenesis Cancer Res., May 15, 2005; 65(10): 3967 - 3979. [Abstract] [Full Text] [PDF] |
||||
|
Y. Yin, R. G. Russell, L. E. Dettin, R. Bai, Z.-L. Wei, A. P. Kozikowski, L. Kopleovich, and R. I. Glazer Peroxisome Proliferator-Activated Receptor {delta} and {gamma} Agonists Differentially Alter Tumor Differentiation and Progression during Mammary Carcinogenesis Cancer Res., May 1, 2005; 65(9): 3950 - 3957. [Abstract] [Full Text] [PDF] |
||||
|
P. E. Massa, X. Li, A. Hanidu, J. Siamas, M. Pariali, J. Pareja, A. G. Savitt, K. M. Catron, J. Li, and K. B. Marcu Gene Expression Profiling in Conjunction with Physiological Rescues of IKK{alpha}-null Cells with Wild Type or Mutant IKK{alpha} Reveals Distinct Classes of IKK{alpha}/NF-{kappa}B-dependent Genes J. Biol. Chem., April 8, 2005; 280(14): 14057 - 14069. [Abstract] [Full Text] [PDF] |
||||
|
C.-S. Shi, G.-Y. Shi, Y.-S. Chang, H.-S. Han, C.-H. Kuo, C. Liu, H.-C. Huang, Y.-J. Chang, P.-S. Chen, and H.-L. Wu Evidence of Human Thrombomodulin Domain as a Novel Angiogenic Factor Circulation, April 5, 2005; 111(13): 1627 - 1636. [Abstract] [Full Text] [PDF] |
||||
|
Z. D. Sharp and A. Bartke Evidence for Down-Regulation of Phosphoinositide 3-Kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR)-Dependent Translation Regulatory Signaling Pathways in Ames Dwarf Mice J. Gerontol. A Biol. Sci. Med. Sci., March 1, 2005; 60(3): 293 - 300. [Abstract] [Full Text] [PDF] |
||||
|
C. Gonzalez, A. M. Corbacho, J. P. Eiserich, C. Garcia, F. Lopez-Barrera, V. Morales-Tlalpan, A. Barajas-Espinosa, M. Diaz-Munoz, R. Rubio, S.-H. Lin, et al. 16K-Prolactin Inhibits Activation of Endothelial Nitric Oxide Synthase, Intracellular Calcium Mobilization, and Endothelium-Dependent Vasorelaxation Endocrinology, December 1, 2004; 145(12): 5714 - 5722. [Abstract] [Full Text] [PDF] |
||||
|
M. Lkhider, R. Castino, E. Bouguyon, C. Isidoro, and M. Ollivier-Bousquet Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions J. Cell Sci., October 1, 2004; 117(21): 5155 - 5164. [Abstract] [Full Text] [PDF] |
||||
|
D. Piwnica, P. Touraine, I. Struman, S. Tabruyn, G. Bolbach, C. Clapp, J. A. Martial, P. A. Kelly, and V. Goffin Cathepsin D Processes Human Prolactin into Multiple 16K-Like N-Terminal Fragments: Study of Their Antiangiogenic Properties and Physiological Relevance Mol. Endocrinol., October 1, 2004; 18(10): 2522 - 2542. [Abstract] [Full Text] [PDF] |
||||
|
Z. Duenas, J. C. Rivera, H. Quiroz-Mercado, J. Aranda, Y. Macotela, P. M. de Oca, F. Lopez-Barrera, G. Nava, J. L. Guerrero, A. Suarez, et al. Prolactin in Eyes of Patients with Retinopathy of Prematurity: Implications for Vascular Regression Invest. Ophthalmol. Vis. Sci., July 1, 2004; 45(7): 2049 - 2055. [Abstract] [Full Text] [PDF] |
||||
|
E. J. Sanders, M. A. Walter, E. Parker, C. Aramburo, and S. Harvey Opticin Binds Retinal Growth Hormone in the Embryonic Vitreous Invest. Ophthalmol. Vis. Sci., December 1, 2003; 44(12): 5404 - 5409. [Abstract] [Full Text] [PDF] |
||||
|
G. Pandini, E. Medico, E. Conte, L. Sciacca, R. Vigneri, and A. Belfiore Differential Gene Expression Induced by Insulin and Insulin-like Growth Factor-II through the Insulin Receptor Isoform A J. Biol. Chem., October 24, 2003; 278(43): 42178 - 42189. [Abstract] [Full Text] [PDF] |
||||
HOME | HELP | CONTACT US | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |