|
|
||||||||
Articles |
Triiodothyronine (T3) is considered a major regulator of mitochondrial activity. In this review, we show evidence of the existence of a direct T3 mitochondrial pathway, and try to clarify the respective importance of the nuclear and mitochondrial pathways for organelle activity. Numerous studies have reported short-term and delayed T3 stimulation of mitochondrial oxygen consumption. Convincing data indicate that an early influence occurs through an extra-nuclear mechanism insensitive to inhibitors of protein synthesis. Although it has been shown that diiodothyronines could actually be T3 mediators of this short-term influence, the detection of specific T3-binding sites, probably corresponding to a 28 kDa c-Erb Aalpha1 protein of the inner membrane, also supports a direct T3 influence. The more delayed influence of thyroid hormone upon mitochondrial respiration probably results from mechanisms elicited at the nuclear level, including changes in phospholipid turnover and stimulation of uncoupling protein expression, leading to an increased inner membrane proton leak. However, the involvement of a direct mitochondrial T3 pathway leading to a rapid stimulation of mitochondrial protein synthesis has to be considered. Both pathways are obviously involved in the T3 stimulation of mitochondrial genome transcription. First, a 43 kDa c-Erb Aalpha1 protein located in the mitochondrial matrix (p43), acting as a potent T3-dependent transcription factor of the mitochondrial genome, induces early stimulation of organelle transcription. In addition, T3 increases mitochondrial TFA expression, a mitochondrial transcription factor encoded by a nuclear gene. Similarly, the stimulation of mitochondriogenesis by thyroid hormone probably involves both pathways. In particular, the c-erb Aalpha gene simultaneously encodes a nuclear and a mitochondrial T3 receptor (p43), thus ensuring coordination of the expression of the mitochondrial genome and of nuclear genes encoding mitochondrial proteins. Recent studies concerning the physiological importance of the direct mitochondrial T3 pathway involving p43 led to the conclusion that it is not only involved in the regulation of fuel metabolism, but also in the regulation of cell differentiation. As the processes leading to or resulting from differentiation are energy-consuming, p43 coordination of metabolism and differentiation could be of significant importance in the regulation of development.
This article has been cited by other articles:
|
J. A. Funk, S. Odejinmi, and R. G. Schnellmann SRT1720 Induces Mitochondrial Biogenesis and Rescues Mitochondrial Function after Oxidant Injury in Renal Proximal Tubule Cells J. Pharmacol. Exp. Ther., May 1, 2010; 333(2): 593 - 601. [Abstract] [Full Text] [PDF] |
||||
|
C. Lu and S.-Y. Cheng Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors J. Mol. Endocrinol., March 1, 2010; 44(3): 143 - 154. [Abstract] [Full Text] [PDF] |
||||
|
S. J. Crockford Evolutionary roots of iodine and thyroid hormones in cell-cell signaling Integr. Comp. Biol., August 1, 2009; 49(2): 155 - 166. [Abstract] [Full Text] [PDF] |
||||
|
K. J. Menzies, B. H. Robinson, and D. A. Hood Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects Am J Physiol Cell Physiol, February 1, 2009; 296(2): C355 - C362. [Abstract] [Full Text] [PDF] |
||||
|
R. Liu, Z. Li, S. Bai, H. Zhang, M. Tang, Y. Lei, L. Chen, S. Liang, Y.-l. Zhao, Y. Wei, et al. Mechanism of Cancer Cell Adaptation to Metabolic Stress: Proteomics Identification of a Novel Thyroid Hormone-mediated Gastric Carcinogenic Signaling Pathway Mol. Cell. Proteomics, January 1, 2009; 8(1): 70 - 85. [Abstract] [Full Text] [PDF] |
||||
|
R. Ventura-Clapier, A. Garnier, and V. Veksler Transcriptional control of mitochondrial biogenesis: the central role of PGC-1{alpha} Cardiovasc Res, July 15, 2008; 79(2): 208 - 217. [Abstract] [Full Text] [PDF] |
||||
|
M. Yamauchi, F. Kambe, X. Cao, X. Lu, Y. Kozaki, Y. Oiso, and H. Seo Thyroid Hormone Activates Adenosine 5'-Monophosphate-Activated Protein Kinase via Intracellular Calcium Mobilization and Activation of Calcium/Calmodulin-Dependent Protein Kinase Kinase-{beta} Mol. Endocrinol., April 1, 2008; 22(4): 893 - 903. [Abstract] [Full Text] [PDF] |
||||
|
M. Uddin, M. Goodman, O. Erez, R. Romero, G. Liu, M. Islam, J. C. Opazo, C. C. Sherwood, L. I. Grossman, and D. E. Wildman Distinct genomic signatures of adaptation in pre- and postnatal environments during human evolution PNAS, March 4, 2008; 105(9): 3215 - 3220. [Abstract] [Full Text] [PDF] |
||||
|
F. Flamant, K. Gauthier, and J. Samarut Thyroid Hormones Signaling Is Getting More Complex: STORMs Are Coming Mol. Endocrinol., February 1, 2007; 21(2): 321 - 333. [Abstract] [Full Text] [PDF] |
||||
|
F. Fontanesi, I. C. Soto, D. Horn, and A. Barrientos Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process Am J Physiol Cell Physiol, December 1, 2006; 291(6): C1129 - C1147. [Abstract] [Full Text] [PDF] |
||||
|
H. Y. Yeung, K. P. Lai, H. Y. Chan, N. K. Mak, G. F. Wagner, and C. K. C. Wong Hypoxia-Inducible Factor-1-Mediated Activation of Stanniocalcin-1 in Human Cancer Cells Endocrinology, November 1, 2005; 146(11): 4951 - 4960. [Abstract] [Full Text] [PDF] |
||||
|
N. Saelim, L. M. John, J. Wu, J. S. Park, Y. Bai, P. Camacho, and J. D. Lechleiter Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor J. Cell Biol., December 6, 2004; 167(5): 915 - 924. [Abstract] [Full Text] [PDF] |
||||
|
L. Moro, E. Marra, F. Capuano, and M. Greco Thyroid Hormone Treatment of Hypothyroid Rats Restores the Regenerative Capacity and the Mitochondrial Membrane Permeability Properties of the Liver after Partial Hepatectomy Endocrinology, November 1, 2004; 145(11): 5121 - 5128. [Abstract] [Full Text] [PDF] |
||||
|
T. E. Sheehan, P. A. Kumar, and D. A. Hood Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone Am J Physiol Endocrinol Metab, June 1, 2004; 286(6): E968 - E974. [Abstract] [Full Text] [PDF] |
||||
|
B. Morte, J. Manzano, T. S. Scanlan, B. Vennstrom, and J. Bernal Aberrant Maturation of Astrocytes in Thyroid Hormone Receptor {alpha}1 Knockout Mice Reveals an Interplay between Thyroid Hormone Receptor Isoforms Endocrinology, March 1, 2004; 145(3): 1386 - 1391. [Abstract] [Full Text] [PDF] |
||||
|
D. P. Kelly and R. C. Scarpulla Transcriptional regulatory circuits controlling mitochondrial biogenesis and function Genes & Dev., February 15, 2004; 18(4): 357 - 368. [Full Text] [PDF] |
||||
|
R. A. Vacca, L. Moro, G. Caraccio, F. Guerrieri, E. Marra, and M. Greco Thyroid Hormone Administration to Hypothyroid Rats Restores the Mitochondrial Membrane Permeability Properties Endocrinology, September 1, 2003; 144(9): 3783 - 3788. [Abstract] [Full Text] [PDF] |
||||
|
O. Broedel, M. Eravci, S. Fuxius, T. Smolarz, A. Jeitner, H. Grau, G. Stoltenburg-Didinger, H. Plueckhan, H. Meinhold, and A. Baumgartner Effects of hyper- and hypothyroidism on thyroid hormone concentrations in regions of the rat brain Am J Physiol Endocrinol Metab, September 1, 2003; 285(3): E470 - E480. [Abstract] [Full Text] [PDF] |
||||
|
R. M. LOSEL, E. FALKENSTEIN, M. FEURING, A. SCHULTZ, H.-C. TILLMANN, K. ROSSOL-HASEROTH, and M. WEHLING Nongenomic Steroid Action: Controversies, Questions, and Answers Physiol Rev, July 1, 2003; 83(3): 965 - 1016. [Abstract] [Full Text] [PDF] |
||||
|
H. H. A. G. M. van der Putten, E. C. H. Friesema, N. A. Abumrad, M. E. Everts, and T. J. Visser Thyroid Hormone Transport by the Rat Fatty Acid Translocase Endocrinology, April 1, 2003; 144(4): 1315 - 1323. [Abstract] [Full Text] [PDF] |
||||
|
F. CASAS, L. DAURY, S. GRANDEMANGE, M. BUSSON, P. SEYER, R. HATIER, A. CARAZO, G. CABELLO, and C. WRUTNIAK-CABELLO Endocrine regulation of mitochondrial activity: involvement of truncated RXR{alpha} and c-Erb A{alpha}1 proteins FASEB J, March 1, 2003; 17(3): 426 - 436. [Abstract] [Full Text] [PDF] |
||||
|
M. Colavecchia, L. N. Christie, Y. S. Kanwar, and D. A. Hood Functional consequences of thyroid hormone-induced changes in the mitochondrial protein import pathway Am J Physiol Endocrinol Metab, January 1, 2003; 284(1): E29 - E35. [Abstract] [Full Text] [PDF] |
||||
|
F. Liu and P. S. Schnable Functional Specialization of Maize Mitochondrial Aldehyde Dehydrogenases Plant Physiology, December 1, 2002; 130(4): 1657 - 1674. [Abstract] [Full Text] [PDF] |
||||
|
C. R. McCudden, K. A. James, C. Hasilo, and G. F. Wagner Characterization of Mammalian Stanniocalcin Receptors. MITOCHONDRIAL TARGETING OF LIGAND AND RECEPTOR FOR REGULATION OF CELLULAR METABOLISM J. Biol. Chem., November 15, 2002; 277(47): 45249 - 45258. [Abstract] [Full Text] [PDF] |
||||
HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |