JME
HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
 QUICK SEARCH:   [advanced]


     


DOI: 10.1677/jme.0.0260067

This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Similar articles in this journal
Right arrow Similar articles in Web of Science
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Web of Science (110)
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Wrutniak-Cabello, C
Right arrow Articles by Cabello, G
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Wrutniak-Cabello, C
Right arrow Articles by Cabello, G
Journal of Molecular Endocrinology, Vol 26, Issue 1, 67-77
Copyright © 2001 by Society for Endocrinology


Articles

Thyroid hormone action in mitochondria

C Wrutniak-Cabello, F Casas, and G Cabello


Triiodothyronine (T3) is considered a major regulator of mitochondrial activity. In this review, we show evidence of the existence of a direct T3 mitochondrial pathway, and try to clarify the respective importance of the nuclear and mitochondrial pathways for organelle activity. Numerous studies have reported short-term and delayed T3 stimulation of mitochondrial oxygen consumption. Convincing data indicate that an early influence occurs through an extra-nuclear mechanism insensitive to inhibitors of protein synthesis. Although it has been shown that diiodothyronines could actually be T3 mediators of this short-term influence, the detection of specific T3-binding sites, probably corresponding to a 28 kDa c-Erb Aalpha1 protein of the inner membrane, also supports a direct T3 influence. The more delayed influence of thyroid hormone upon mitochondrial respiration probably results from mechanisms elicited at the nuclear level, including changes in phospholipid turnover and stimulation of uncoupling protein expression, leading to an increased inner membrane proton leak. However, the involvement of a direct mitochondrial T3 pathway leading to a rapid stimulation of mitochondrial protein synthesis has to be considered. Both pathways are obviously involved in the T3 stimulation of mitochondrial genome transcription. First, a 43 kDa c-Erb Aalpha1 protein located in the mitochondrial matrix (p43), acting as a potent T3-dependent transcription factor of the mitochondrial genome, induces early stimulation of organelle transcription. In addition, T3 increases mitochondrial TFA expression, a mitochondrial transcription factor encoded by a nuclear gene. Similarly, the stimulation of mitochondriogenesis by thyroid hormone probably involves both pathways. In particular, the c-erb Aalpha gene simultaneously encodes a nuclear and a mitochondrial T3 receptor (p43), thus ensuring coordination of the expression of the mitochondrial genome and of nuclear genes encoding mitochondrial proteins. Recent studies concerning the physiological importance of the direct mitochondrial T3 pathway involving p43 led to the conclusion that it is not only involved in the regulation of fuel metabolism, but also in the regulation of cell differentiation. As the processes leading to or resulting from differentiation are energy-consuming, p43 coordination of metabolism and differentiation could be of significant importance in the regulation of development.


This article has been cited by other articles:


Home page
J. Pharmacol. Exp. Ther.Home page
J. A. Funk, S. Odejinmi, and R. G. Schnellmann
SRT1720 Induces Mitochondrial Biogenesis and Rescues Mitochondrial Function after Oxidant Injury in Renal Proximal Tubule Cells
J. Pharmacol. Exp. Ther., May 1, 2010; 333(2): 593 - 601.
[Abstract] [Full Text] [PDF]


Home page
J Mol EndocrinolHome page
C. Lu and S.-Y. Cheng
Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors
J. Mol. Endocrinol., March 1, 2010; 44(3): 143 - 154.
[Abstract] [Full Text] [PDF]


Home page
Integr. Comp. Biol.Home page
S. J. Crockford
Evolutionary roots of iodine and thyroid hormones in cell-cell signaling
Integr. Comp. Biol., August 1, 2009; 49(2): 155 - 166.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Cell Physiol.Home page
K. J. Menzies, B. H. Robinson, and D. A. Hood
Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects
Am J Physiol Cell Physiol, February 1, 2009; 296(2): C355 - C362.
[Abstract] [Full Text] [PDF]


Home page
Mol. Cell. ProteomicsHome page
R. Liu, Z. Li, S. Bai, H. Zhang, M. Tang, Y. Lei, L. Chen, S. Liang, Y.-l. Zhao, Y. Wei, et al.
Mechanism of Cancer Cell Adaptation to Metabolic Stress: Proteomics Identification of a Novel Thyroid Hormone-mediated Gastric Carcinogenic Signaling Pathway
Mol. Cell. Proteomics, January 1, 2009; 8(1): 70 - 85.
[Abstract] [Full Text] [PDF]


Home page
Cardiovasc ResHome page
R. Ventura-Clapier, A. Garnier, and V. Veksler
Transcriptional control of mitochondrial biogenesis: the central role of PGC-1{alpha}
Cardiovasc Res, July 15, 2008; 79(2): 208 - 217.
[Abstract] [Full Text] [PDF]


Home page
Mol. Endocrinol.Home page
M. Yamauchi, F. Kambe, X. Cao, X. Lu, Y. Kozaki, Y. Oiso, and H. Seo
Thyroid Hormone Activates Adenosine 5'-Monophosphate-Activated Protein Kinase via Intracellular Calcium Mobilization and Activation of Calcium/Calmodulin-Dependent Protein Kinase Kinase-{beta}
Mol. Endocrinol., April 1, 2008; 22(4): 893 - 903.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
M. Uddin, M. Goodman, O. Erez, R. Romero, G. Liu, M. Islam, J. C. Opazo, C. C. Sherwood, L. I. Grossman, and D. E. Wildman
Distinct genomic signatures of adaptation in pre- and postnatal environments during human evolution
PNAS, March 4, 2008; 105(9): 3215 - 3220.
[Abstract] [Full Text] [PDF]


Home page
Mol. Endocrinol.Home page
F. Flamant, K. Gauthier, and J. Samarut
Thyroid Hormones Signaling Is Getting More Complex: STORMs Are Coming
Mol. Endocrinol., February 1, 2007; 21(2): 321 - 333.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Cell Physiol.Home page
F. Fontanesi, I. C. Soto, D. Horn, and A. Barrientos
Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process
Am J Physiol Cell Physiol, December 1, 2006; 291(6): C1129 - C1147.
[Abstract] [Full Text] [PDF]


Home page
EndocrinologyHome page
H. Y. Yeung, K. P. Lai, H. Y. Chan, N. K. Mak, G. F. Wagner, and C. K. C. Wong
Hypoxia-Inducible Factor-1-Mediated Activation of Stanniocalcin-1 in Human Cancer Cells
Endocrinology, November 1, 2005; 146(11): 4951 - 4960.
[Abstract] [Full Text] [PDF]


Home page
JCBHome page
N. Saelim, L. M. John, J. Wu, J. S. Park, Y. Bai, P. Camacho, and J. D. Lechleiter
Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor
J. Cell Biol., December 6, 2004; 167(5): 915 - 924.
[Abstract] [Full Text] [PDF]


Home page
EndocrinologyHome page
L. Moro, E. Marra, F. Capuano, and M. Greco
Thyroid Hormone Treatment of Hypothyroid Rats Restores the Regenerative Capacity and the Mitochondrial Membrane Permeability Properties of the Liver after Partial Hepatectomy
Endocrinology, November 1, 2004; 145(11): 5121 - 5128.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Endocrinol. Metab.Home page
T. E. Sheehan, P. A. Kumar, and D. A. Hood
Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone
Am J Physiol Endocrinol Metab, June 1, 2004; 286(6): E968 - E974.
[Abstract] [Full Text] [PDF]


Home page
EndocrinologyHome page
B. Morte, J. Manzano, T. S. Scanlan, B. Vennstrom, and J. Bernal
Aberrant Maturation of Astrocytes in Thyroid Hormone Receptor {alpha}1 Knockout Mice Reveals an Interplay between Thyroid Hormone Receptor Isoforms
Endocrinology, March 1, 2004; 145(3): 1386 - 1391.
[Abstract] [Full Text] [PDF]


Home page
Genes Dev.Home page
D. P. Kelly and R. C. Scarpulla
Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
Genes & Dev., February 15, 2004; 18(4): 357 - 368.
[Full Text] [PDF]


Home page
EndocrinologyHome page
R. A. Vacca, L. Moro, G. Caraccio, F. Guerrieri, E. Marra, and M. Greco
Thyroid Hormone Administration to Hypothyroid Rats Restores the Mitochondrial Membrane Permeability Properties
Endocrinology, September 1, 2003; 144(9): 3783 - 3788.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Endocrinol. Metab.Home page
O. Broedel, M. Eravci, S. Fuxius, T. Smolarz, A. Jeitner, H. Grau, G. Stoltenburg-Didinger, H. Plueckhan, H. Meinhold, and A. Baumgartner
Effects of hyper- and hypothyroidism on thyroid hormone concentrations in regions of the rat brain
Am J Physiol Endocrinol Metab, September 1, 2003; 285(3): E470 - E480.
[Abstract] [Full Text] [PDF]


Home page
Physiol. Rev.Home page
R. M. LOSEL, E. FALKENSTEIN, M. FEURING, A. SCHULTZ, H.-C. TILLMANN, K. ROSSOL-HASEROTH, and M. WEHLING
Nongenomic Steroid Action: Controversies, Questions, and Answers
Physiol Rev, July 1, 2003; 83(3): 965 - 1016.
[Abstract] [Full Text] [PDF]


Home page
EndocrinologyHome page
H. H. A. G. M. van der Putten, E. C. H. Friesema, N. A. Abumrad, M. E. Everts, and T. J. Visser
Thyroid Hormone Transport by the Rat Fatty Acid Translocase
Endocrinology, April 1, 2003; 144(4): 1315 - 1323.
[Abstract] [Full Text] [PDF]


Home page
FASEB J.Home page
F. CASAS, L. DAURY, S. GRANDEMANGE, M. BUSSON, P. SEYER, R. HATIER, A. CARAZO, G. CABELLO, and C. WRUTNIAK-CABELLO
Endocrine regulation of mitochondrial activity: involvement of truncated RXR{alpha} and c-Erb A{alpha}1 proteins
FASEB J, March 1, 2003; 17(3): 426 - 436.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Physiol. Endocrinol. Metab.Home page
M. Colavecchia, L. N. Christie, Y. S. Kanwar, and D. A. Hood
Functional consequences of thyroid hormone-induced changes in the mitochondrial protein import pathway
Am J Physiol Endocrinol Metab, January 1, 2003; 284(1): E29 - E35.
[Abstract] [Full Text] [PDF]


Home page
Plant Physiol.Home page
F. Liu and P. S. Schnable
Functional Specialization of Maize Mitochondrial Aldehyde Dehydrogenases
Plant Physiology, December 1, 2002; 130(4): 1657 - 1674.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
C. R. McCudden, K. A. James, C. Hasilo, and G. F. Wagner
Characterization of Mammalian Stanniocalcin Receptors. MITOCHONDRIAL TARGETING OF LIGAND AND RECEPTOR FOR REGULATION OF CELLULAR METABOLISM
J. Biol. Chem., November 15, 2002; 277(47): 45249 - 45258.
[Abstract] [Full Text] [PDF]




HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS
Copyright © 2001 by the Society for Endocrinology.