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Abstract
Parathyroid hormone (PTH) treatment stimulates osteoblast differentiation and bone

formation, and is the only currently approved anabolic therapy for osteoporosis. In cells of

the osteoblast lineage, PTH also stimulates the expression of members of the interleukin 6

(IL-6) cytokine superfamily. Although the similarity of gene targets regulated by these

cytokines and PTH suggest cooperative action, the dependence of PTH anabolic action on

IL-6 cytokine signaling is unknown. To determine whether cytokine signaling in the

osteocyte through glycoprotein 130 (gp130), the common IL-6 superfamily receptor subunit,

is required for PTH anabolic action, male mice with conditional gp130 deletion in osteocytes

(Dmp1Cre.gp130f/f) and littermate controls (Dmp1Cre.gp130w/w) were treated with

hPTH(1–34) (30 mg/kg 5! per week for 5 weeks). PTH dramatically increased bone formation

in Dmp1Cre.gp130w/w mice, as indicated by elevated osteoblast number, osteoid surface,

mineralizing surface, and increased serum N-terminal propeptide of type 1 collagen (P1NP).

However, in mice with Dmp1Cre-directed deletion of gp130, PTH treatment changed none of

these parameters. Impaired PTH anabolic action was associated with a 50% reduction in

Pth1r mRNA levels in Dmp1Cre.gp130f/f femora compared with Dmp1Cre.gp130w/w.

Furthermore, lentiviral-Cre infection of gp130f/f primary osteoblasts also lowered Pth1r

mRNA levels to 16% of that observed in infected C57/BL6 cells. In conclusion, osteocytic

gp130 is required to maintain PTH1R expression in the osteoblast lineage, and for the

stimulation of osteoblast differentiation that occurs in response to PTH.
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Introduction
Intermittent administration of parathyroid hormone

(PTH) to animal models and humans (teriparatide

(Forteo)) increases bone mass (Reeve et al. 1980, Neer

et al. 2001, Lindsay et al. 2007), and is the only approved

treatment for osteoporosis capable of inducing bone
formation (reviewed in Hodsman et al. (2005) and Khosla

et al. (2008)). However, the mechanisms by which

intermittent PTH increases bone mass remain unclear,

and identifying downstream targets of this pathway may

aid in the design of improved anabolic therapies.
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The effects of PTH on bone mass are likely to be

mediated by cells of the osteoblast lineage. This lineage

includes committed pre-osteoblasts, matrix-producing

osteoblasts, bone lining cells, and matrix-embedded

osteocytes. PTH acts directly at each stage of differen-

tiation, as follows. PTH promotes pre-osteoblast differen-

tiation (Dobnig & Turner 1995), inhibits osteoblast

apoptosis (Jilka et al. 1999), and reactivates quiescent lining

cells to become active osteoblasts (Kim et al. 2012). PTH also

acts directly on osteocytes to reduce their expression of the

WNT antagonist sclerostin, an inhibitor of bone formation

(Bellido et al. 2005, Keller & Kneissel 2005).

PTH also stimulates the expression of receptor

activator of NF-kappa-B ligand (RANKL) by early osteoblast

lineage cells, thereby promoting osteoclast differentiation

(Udagawa et al. 1999). However, the stages of osteoblast

differentiation most important for the actions of PTH

remain controversial, because the expression of RANKL

by matrix-embedded osteocytes is also stimulated by PTH

(Xiong et al. 2011).

PTH also acts on the osteoblast lineage to rapidly

promote the transcription of interleukin 6 (IL-6) family

cytokines and receptors. These include Il6 (Greenfield

et al. 1996), Il11, oncostatin M receptor (Osmr), leukemia

inhibitory factor (Lif), and cytokine receptor-like factor 1

(Crlf1) (Walker et al. 2012). These cytokines all depend on

the promiscuous co-receptor glycoprotein 130 (gp130) for

signaling (reviewed in Sims & Walsh (2010)), and gp130

expression by the osteoblast lineage is also stimulated by

PTH (Romas et al. 1996).

Many of the actions and gene targets of IL-6 family

cytokines are common to those of PTH. As is the case with

PTH, the cytokines IL-6, IL-11, OSM, LIF, and cardiotro-

phin (CT-1) promote osteoblast differentiation in vitro

(Walker et al. 2008, 2010) and OSM, LIF, and CT-1

stimulate bone formation in vivo (Cornish et al. 1993,

Walker et al. 2008, 2010). The family members IL-11, LIF,

OSM, CT-1, and CNTF also inhibit osteocytic sclerostin

expression (Walker et al. 2010, Johnson et al. 2014a). In

addition, IL-6, IL-11, OSM, LIF, and CT-1, stimulate

osteoblast lineage expression of RANKL (O’Brien et al.

1999, Palmqvist et al. 2002, Walker et al. 2008) and

promote osteoclastogenesis when precursors are co-cul-

tured with osteoblasts in vitro (Tamura et al. 1993, Richards

et al. 2000). These similar effects and the upregulation of

IL-6 family cytokines in osteoblasts by PTH suggest that

this cytokine family may play a role in the actions of PTH

on the osteoblast lineage.

Hence, in this study we examined the requirement of

gp130 signaling in osteocytes for the anabolic action of
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0424 Printed in Great Britain
PTH, using mice with Dmp1Cre-directed deletion of gp130

in osteocytes (Dmp1Cre.gp130f/f; Johnson et al. 2014b) and

mature osteoblasts (Xiong et al. 2011, Torreggiani et al.

2013). We found that gp130 in these cells is required for

PTH to increase osteoblast number and bone forming

surfaces, and to maintain PTH1R expression in the

osteoblast lineage.
Materials and methods

Mice

All animal procedures were conducted with the approval

of the St. Vincent’s Health Melbourne Animal Ethics

Committee. Dmp1Cre mice were obtained from Lynda

Bonewald (University of Kansas, Kansas City, MO, USA; Lu

et al. 2007). Floxed gp130 mice backcrossed onto C57/BL6

were obtained from Rodger McEver (Oklahoma Medical

Research Foundation, Oklahoma City, OK, USA; Betz et al.

1998). Mice hemizygous for the Cre transgene were crossed

with the gp130 flox mouse in which the transmembrane

domain (exon 15) was flanked by loxP sites, resulting in

ablation of intracellular gp130 signaling, as previously

reported (Betz et al. 1998) and confirmed at the mRNA

level in bone (Johnson et al. 2014b). For all experiments,

Dmp1.CreC cousins were used as controls.

Six-week-old male Dmp1Cre.gp130w/w or floxed

Dmp1Cre.gp130f/f mice were injected i.p. with 30 mg/kg

human PTH 1–34 (hPTH 1–34) or vehicle, 5 days a week for

5 weeks (nZ9/10 per group). This dose and duration of

PTH treatment were chosen because it provides a robust

increase in lamellar bone formation rate and osteoblast

surface in male mice without increasing osteoclasto-

genesis (Walker et al. 2012, Takyar et al. 2013, Tonna

et al. 2014). The mice were also injected with calcein

(20 mg/kg) 7 and 2 days before tissue collection. The bones

were collected 1 h after the last PTH injection. The mice

were fasted for 12 h before anaesthesia with ketamine/

xylazine and a final blood sample was collected by cardiac

puncture. The blood samples were centrifuged for 10 min

at 4000 g and the serum was collected in a fresh tube and

stored at K80 8C until analysis for cross-linked C-terminal

telopeptide of type 1 collagen (CTX1), N-terminal propep-

tide of type 1 collagen (P1NP) (Immunodiagnostic Systems

Limited, Boldon, Tyne and Wear, UK), and PTH (Immu-

notopics, San Clemente, CA, USA) as per manufacturer’s

instructions. One femur was flushed of marrow and the

bone shaft was collected for RNA analyses as described

previously (Walker et al. 2012). Briefly, bones were

homogenized with a LS-10-35 Polytron homogenizer in
Published by Bioscientifica Ltd.
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TRI for 4!5 s bursts and stored at K80 8C. RNA from each

bone was purified using the RNeasy lipid tissue minikit

(Qiagen), according to manufacturer’s instructions.

The other femur was analyzed by micro-computed

tomography as described previously (Johnson et al. 2014b)

using the SkyScan 1076 System (Bruker-microCT, Kontich,

Belgium). The images were acquired using the following

settings: 9 mm voxel resolution, 0.5 mm aluminium filter,

48 kV voltage, and 100 mA current, exposure time, rotation

0.5o, frame averagingZ1. The images were reconstructed

and analyzed using SkyScan Software programs NRecon

(version 1.6.3.3), DataViewer (version 1.4.4), and CT

Analyser (version 1.12.0.0). Femoral trabecular analysis

region of interest (ROI) was determined by identifying the

distal end of the femur and calculating 15% of the total

femur length toward the femora mid-shaft, where we then

analyzed an ROI of 12.6% of the total femur length. The

analysis of bone structure was completed using adaptive

thresholding (mean of min and max values) in CT

Analyser. The thresholds for analysis were determined

based on multilevel Otsu thresholding of the entire data

set, and were set at 45–255 for trabecular bone. The

cortical analyses were performed at 35% above the distal

end of the femur toward the femora mid-shaft, also with

a 12.6% ROI with the threshold values set at 100–255.

Tibiae were collected for histomorphometric analyses

as previously described (Sims et al. 2006). Briefly,

trabecular histomorphometry was carried out on unde-

calcified sections in the secondary spongiosa of the

proximal tibia, in a region 370 mm below the proximal

edge of the hypertrophic zone of the growth plate,

extending 1.11 mm in the proximal direction. Periosteal

histomorphometry was carried out on the antero-fibular

side of the tibia, commencing 1.11 mm below the

chondro-osseus junction of the growth plate, and extend-

ing 1.11 mm in the proximal direction. The nomenclature

is as described previously (Parfitt et al. 1987).
Lenti-Cre viral infection

Calvarial osteoblasts were collected from C57/BL6 WT and

gp130f/f neonates by digesting calvaria in 1:2 collagenase

II/dispase solution at 37 8C on a shaker (1!5 min 4!

10 min digestions). The cells were resuspended in culture

media (alpha-MEMC10% fetal bovine serum), and

allowed to adhere overnight before being frozen and

stored in liquid nitrogen. When required, isolated cells

were thawed and expanded in culture and infected with a

GFP-tagged lenti-Cre virus synthesized as described

previously (Tonna et al. 2014) for 24 h with polybrene in
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0424 Printed in Great Britain
the maintenance media. Following infection, media was

changed and cells were evaluated for GFP expression by

microscopy; O30–60% transfection efficiency was observed

(nZ3 independent experiments). The cells were expanded

in culture for 2–3 weeks in alpha-MEMC10% fetal bovine

serum, and GFP positive cells (fluorescence driven by Cre

transgene expression) were sorted on a FACS Aria (BD

Biosciences, San Jose, CA, USA) for GFP.The GFPC cellswere

harvested for RNA intrizol (LifeTechnologies) and separated

and precipitated using chloroform and isopropanol.

Extracted RNA was treated with DNase using Ambion

TURBO DNA-free Kit (Life Technologies) and quantified on

a NanoDrop ND1000 Spectrophotemeter (Thermo Scienti-

fic, Wilmington, DE, USA).
Semi-quantitative real-time PCR

cDNA synthesis from 50 to 100 ng DNase-treated RNA

from each femur or cell culture preparation was carried out

using AffinityScript (Agilent Technologies, Santa Clara,

CA, USA) as per the manufacturer’s instructions. The stock

cDNA was diluted to a concentration of 5 ng/ml and semi-

quantitative real-time PCR (qPCR) was performed on

12.5 ng cDNA in a reaction volume of 10 ml using in-house

master mix of 10! AmpliTaq Gold with SYBR Green

nucleic acid gel stain (Life Technologies). Dkk1 primers

were designed using NCBI Primer Blast: forward, GAG-

GGGAAATTGAGGAAAGC and reverse, ACGGAGC-

CTTCTTGTCCTTT. Other primers were as previously

described for Pth1r, hypoxanthine phosphoribosyltrans-

ferase 1 (Hprt1), Sost, Tnfsf11, Il6 (Allan et al. 2008), b-2

microglobulin (B2m) (McGregor et al. 2010), and hydro-

xymethylbilane synthase (Hmbs) (Johnson et al. 2014b).

The samples were dispensed onto optically clear

96-well plates (Thermo Scientific) and run on a Stratagene

Mx3000P (Agilent Technologies). The cycling conditions

were 95 8C for 10 min (95 8C for 30 s, 58 8C for 1 min, and

72 8C for 30 s)!40 cycles, followed by a dissociation step

(95 8C for 1 min, 55 8C for 30 s, and 95 8C for 30 s). The

post-run samples were analyzed using MxPro (Agilent

Technologies, Santa Clara, CA, USA) and reported using

linear DCT values normalized to the geometric mean of

the two housekeeping genes (HKG) Hprt1 and Hmbs or to

B2m as indicated.
Statistical analysis

All graphs are presented as the mean/genotypeCS.E.M..

NZ5–10 animals/group as indicated in the figure legend.

For in vitro experiments, data shown is the average of three
Published by Bioscientifica Ltd.
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independentbiological replicates. Statistical significance was

considered when P!0.05. Differences between groups were

analyzed by two-way ANOVA and post hoc Šidak multiple

comparison test. Skewed variables were transformed

using the natural logarithm before statistical analyses. For

the lenti-viral Cre-infected primary calvarial osteoblasts,

Student’s t-test was used to assess significance. Statistical

analyses were performed using GraphPad Prism version 6.0c

for Mac OS X (GraphPad Software, La Jolla, CA, USA).
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Figure 1

Osteocytic gp130 is required for PTH to increase osteoblast numbers and bone

formation in trabecular bone. Male mice were treated with hPTH (1–34) at

30 mg/kg per day for 5 weeks. (A) Numbers of osteoblasts/bone perimeter

(N.Ob/B.Pm), (B) osteoblast surface/bone surface (Ob.S/BS), (C) osteoid

surface/bone surface (OS/BS), (D) osteoid thickness (OTh), (E) double

calcein-labeled surface (dLS/BS), and (F) mineral apposition rate (MAR)

from trabecular bone in the proximal tibial secondary spongiosa in

Dmp1Cre.gp130w/w (gp130w/w)andDmp1Cre.gp130f/f (gp130f/f)mice. (G)The

serum levels of procollagen type 1 amino-terminal propeptide (P1NP) and (H)

endogenous murine PTH measured at the end of the treatment protocol are

also shown. Scalebars aremeanCS.E.M.,nZ8–10pergroup.*P%0.05, **P%0.01

and ***P%0.001, PTH-treated compared with genotype-matched vehicle-

treated mice; CCP!0.01 compared to vehicle-treated gp130 w/w mice.
Results

Dmp1Cre.gp130f/fmice show no increase in the number of

trabecular osteoblasts in response to PTH

PTH treatment at 30 mg/kg per day significantly increased

osteoblast number/bone perimeter (NOb/BPm) on trabe-

cular bone in Dmp1Cre.gp130w/w mice by 76% (Fig. 1A).

Osteoblast surface/bone surface (ObS/BS; Fig. 1B) and

osteoid surface/bone surface (OS/BS; Fig. 1C) were also

elevated by PTH treatment to similar extents. We detected

no significant changes in osteoid thickness in

Dmp1Cre.gp130w/w mice after PTH treatment (Fig. 1D).

In contrast to Dmp1Cre.gp130w/w mice, PTH treatment

did not increase osteoblast or osteoid-derived parameters

in age- and sex-matched Dmp1Cre.gp130f/f mice (Fig. 1A, B,

C and D). Two-way ANOVA revealed that the effects of

PTH treatment on both NOb/BPm and ObS/BS were

significantly reduced in the Dmp1Cre.gp130f/f mice

compared with Dmp1Cre.gp130w/w controls (interaction

PZ0.039 and PZ0.043 respectively). This indicates that

the effect of PTH on osteoblast differentiation is depen-

dent on gp130 expression in osteocytes.

In line with the effects on osteoblast numbers, bone

forming surfaces, indicated by incorporation of calcein

labels, including both double-labeled surface (dLS/BS)

(Fig. 1E) and single-labeled surface (P%0.05, not

shown) were significantly greater in PTH-treated

Dmp1Cre.gp130w/w mice compared with controls. Again,

this was not observed in Dmp1Cre.gp130f/f mice. Mineral

apposition rate (MAR) was significantly greater in both

Dmp1Cre.gp130f/f and Dmp1Cre.gp130w/w mice treated

with PTH compared with their vehicle-treated controls

(Fig. 1F), indicating that an increase in mineralization rate

in response to PTH is retained on those surfaces on which

bone formation occurs in Dmp1Cre.gp130f/f mice.

PTH-treated Dmp1Cre.gp130w/w mice had significantly

higher serum P1NP levels than Dmp1Cre.gp130w/w

untreated controls. In contrast, in Dmp1Cre.gp130f/f mice

there was no significant effect of PTH on P1NP levels
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0424 Printed in Great Britain
compared with vehicle-treated Dmp1Cre.gp130f/f mice

(Fig. 1G); interaction P valueZ0.009 by two-way ANOVA.

These results are consistent with the histomorphometry

data and confirm that at a systemic level, the effect of PTH

on bone formation is blunted in Dmp1Cre.gp130f/f mice.

In both Dmp1Cre.gp130f/f and Dmp1Cre.gp130w/w

mice, intermittent human PTH treatment led to reduced

production of endogenous circulating murine PTH levels

(Fig. 1H), demonstrating that negative feedback at the

parathyroid gland induced by exogenous PTH adminis-

tration was maintained in both groups of mice.
Published by Bioscientifica Ltd.
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Table 1 Effects of PTH on trabecular and cortical bone in femora from Dmp1Cre.gp130w/w and Dmp1Cre.gp130w/w mice.

Dmp1Cre.gp130w/w Dmp1Cre.gp130f/f

Vehicle (nZ9) PTH (nZ10) Vehicle (nZ9) PTH (nZ9)

BV/TV (%) 24.86G0.42 21.54G1.32 17.70G1.55CCC 20.61G0.96
Tb.Th (mm) 57.61G1.80 56.49G2.22 57.92G3.01 57.42G3.83
Tb.N (/mm) 4.35G0.15 3.80G0.16 3.03G0.15CCC 3.64G0.18
Tb.Sp (mm) 122.71G2.96 144.39G14.04 171.05G15.74CCC 158.98G10.37
Ct.Ar (mm2) 0.60G0.02 0.65G0.02 0.63G0.02 0.67G0.03

Fixed nondemineralized femora from vehicle- or PTH-treated mice were analyzed by mCT. Effect of gp130f/f transgene: CCCP!0.001 vs Dmp1Cre.gp130w/w

(two-way ANOVA with Šidak multiple comparisons test). BV/TV, bone volume per total volume of the region of interest; Tb.Th, trabecular thickness; Tb.N,
trabecular number; Tb.Sp, trabecular separation; Ct.Ar, cortical area.

Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Research T STANDAL and others Osteocytic gp130 and PTH
anabolic response

223 :2 185
Although this dose of PTH significantly increased

all markers of bone formation in Dmp1Cre.gp130w/w mice,

we did not detect a significant increase in trabecular

bone mass by micro-computed tomography with this

short-time course of low-dose treatment (Table 1). The low

trabecular bone mass of these mice, previously reported

(Johnson et al. 2014b), was confirmed.
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This protocol of intermittent PTH treatment did not

significantly change osteoclast number/bone perimeter
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(Fig. 2C), or serum levels of cross-linked CTX1 (Fig. 2D) in
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Figure 2
Effects of PTH on cortical bone

Periosteal MAR (Fig. 3A), periosteal mineralising surface

(Fig. 3B) and periosteal perimeter (Fig. 3C) were all

significantly greater in PTH-treated Dmp1Cre.gp130w/w

mice compared with untreated mice. None of these

parameters were significantly increased by PTH treatment

in Dmp1Cre.gp130f/f mice compared with genotype-

matched vehicle controls (Fig. 3A–C), indicating that

periosteal growth in response to PTH may also be impaired

in the absence of osteocytic gp130.

No effect of intermittent PTH on bone resorption. Male mice were treated

with hPTH (1–34) at 30 mg/kg per day for 5 weeks. (A) Numbers of

osteoclasts per unit bone perimeter (NOc/BPm), (B) numbers of osteoclasts

per unit osteoclast perimeter (NOc/OcPm), (C) osteoclast surface per unit

bone surface (OcS/BS) measured in the proximal tibial secondary spongiosa,

and (D) serum levels of cross-linked C-terminal telopeptide of type 1

collagen (CTX1) in PTH and vehicle-treated Dmp1Cre.gp130w/w (gp130

w/w) and Dmp1Cre.gp130f/f (gp130 f/f) mice. Scale bars are meanCS.E.M.,

nZ8–10 per group.
Normal response of osteoclastic genes, but lack of

inhibition of WNT signaling inhibitors by PTH treatment

in Dmp1Cre.gp130f/f mice

RANKL (gene name Tnfsf11) and IL-6 (Il6) are both potent

stimuli of osteoclast formation, and PTH increases their
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0424 Printed in Great Britain
expression in cells of the osteoblast lineage (Greenfield

et al. 1995, Udagawa et al. 1999). Indeed, in marrow-

flushed femoral samples collected 1 h after the last of these

5 weeks of injections, mRNA levels of Tnfsf11 and Il6 were

significantly higher in both genotypes after PTH treatment

(Fig. 4A and B); this increase was not significantly affected

by the genotype (two-way ANOVA interaction P valuesZ

0.365 and 0.314 respectively). This indicated that among

cells in the flushed femora, which would include

osteoblasts at different stages of differentiation as well as

osteocytes, are some cells that retain normal responses of

these genes to PTH.

Wingless (WNT)-signaling is important for osteoblast

differentiation and bone formation, and PTH has been

shown to stimulate WNT signaling by suppressing

Dickopf1 (Dkk1) and sclerostin (Sost) expression in the
Published by Bioscientifica Ltd.
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Figure 3

PTH effects on cortical bone are impaired in Dmp1Cre.gp130f/f mice.

Male mice were treated with hPTH (1–34) at 30mg/kg per day for 5 weeks.

(A) Tibial periosteal MAR (Ps.MAR), and (B) mineralizing surface per unit

bone surface (MS/BS) in the tibial diaphysis, and (C) periosteal perimeter

(Ps.Pm) of the femoral diaphysis in PTH and vehicle-treated

Dmp1Cre.gp130w/w (gp130 w/w) and Dmp1Cre.gp130f/f (gp130 f/f) mice.

Scale bars are meanCS.E.M., nZ8–10 per group. **P%0.01, NS, PO0.05 (not

statistically significant) in PTH-treated compared with genotype-matched

vehicle-treated mice. C, P!0.05, vehicle-treated Dmp1Cre.gp130f/f

compared with vehicle-treated Dmp1Cre.gp130w/w.
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Figure 4

PTH effects on WNT-inhibitor, but not osteoclastogenic, mRNA levels are

impaired in DMP1Cre.gp130f/f mice. RNA was isolated from femurs flushed

of bone marrow and expression of PTH target genes was examined by

relative quantitative PCR. Tnfs11 mRNA (A), Il6 mRNA (B), Dkk1 mRNA (C)

and Sost mRNA (D) in Dmp1Cre.gp130w/w and Dmp1Cre.gp130f/f mice

treated for 5 weeks with PTH, collected 1 h after the final injection. All

values are shown relative to housekeeping (Hkg) – the geometric mean of

hypoxanthine phosphoribosyltransferase 1 (Hprt1) and hydroxymethylbi-

lane synthase (Hmbs). Scale bars are meanCS.E.M., nZ5–8 bones per group,

with mRNA prepared and analyzed separately. **P%0.01 and ***P%0.001,

PTH-treated compared with genotype-matched vehicle-treated mice;
CP!0.05, vehicle-treated Dmp1Cre.gp130f/f compared with

vehicle-treated Dmp1Cre.gp130w/w.

Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Research T STANDAL and others Osteocytic gp130 and PTH
anabolic response

223 :2 186
osteoblast lineage (Keller & Kneissel 2005, Yao et al. 2011).

For this reason, we quantified mRNA levels of Dkk1 and

Sost in flushed femurs. As expected, Dkk1 mRNA levels

were significantly lower in PTH-treated Dmp1Cre.gp130w/w

femurs compared with untreated mice. However,

Dkk1 was not lower in femurs from PTH-treated

Dmp1Cre.gp130f/f mice compared with controls (Fig. 4C).

Sost mRNA levels were slightly, but not significantly,

lowered in response to PTH in Dmp1Cre.gp130w/w femora.

Dmp1Cre.gp130f/f femora showed a lower level of Sost

mRNA compared with vehicle-treated Dmp1Cre.gp130w/w

controls; with PTH treatment these mice showed a
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0424 Printed in Great Britain
significant increase in Sost mRNA levels (Fig. 4D). These

differences in the effects of PTH treatment on gene

expression were significant by two-way ANOVA for both

Dkk1 (interaction PZ0.01) and Sost (interaction PZ0.003).

Thus, PTH treatment does not decrease WNT antagonist

expression in Dmp1Cre.gp130f/f mice, implying that gp130

signaling in osteocytes is important for the PTH effect on

WNT signaling inhibitors.
Pth1r expression is reduced in DMP1Cre.gp130f/f mice and

gp130-deficient osteoblasts

Since many effects of PTH were blocked in

Dmp1Cre.gp130f/f mice, we quantified Pth1r mRNA levels

in flushed femurs from untreated 12-week-old

Dmp1Cre.gp130f/f and Dmp1Cre.gp130w/w mice. Surpris-

ingly, Pth1r mRNA expression was 47% lower in

Dmp1Cre.gp130f/f compared with Dmp1Cre.gp130w/w

femurs (PZ0.03; Fig. 5A).

These findings were supported by in vitro data, where

C57/BL6 and gp130f/f calvarial osteoblasts were infected

with lentiviral Cre-recombinase. In Cre-infected gp130f/f

osteoblasts, gp130 was significantly lowered by 52%, and

Pth1r mRNA was 84% lower than in infected C57/BL6 cells
Published by Bioscientifica Ltd.
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Figure 5

PTH1R expression is reduced in DMP1Cre.gp130f/f mice and gp130 deficient

cultured osteoblasts. (A) Pth1r mRNA quantified by qPCR in femurs flushed

of bone marrow obtained from untreated 12-week-old Dmp1Cre.gp130w/w

and Dmp1Cre.gp130f/f mice, normalized to Hmbs; nZ8 samples per group.

(B) gp130 (Il6st) and (C) Pth1r, Runx2, Osx and Alpl mRNA levels in primary

calvarial osteoblasts obtained from gp130f/f or C57/BL6 WT neonates

infected with lentiviral Cre-recombinase; levels are shown normalized to

beta-2-microglobulin (B2m) (nZ3 biological replicates). *P% 0.05;

**P%0.01, vs gp130 w/w or C57/BL6.
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(Fig.5BandC).ThemRNAlevelsofRunx2,Osx, andAlplwere

not significantly altered by Cre-infection of gp130f/f osteo-

blasts (Fig. 5C), consistent with previously published mRNA

levels of these genes in the femora ofDmp1Cre.gp130f/f mice

(Johnson et al. 2014b). This suggests that the cells of the

osteoblast lineage require signals mediated by gp130 to

maintain PTH1R expression, and that a lack of PTH1R in

Dmp1Cre expressing cells is responsible for the reduced

response to anabolic PTH treatment.
Discussion

This work demonstrates that PTH-induced osteoblast

differentiation is dependent on gp130 expression in

mature osteoblast lineage cells. gp130 is needed to

maintain Pth1r expression in osteoblasts, and is required

for PTH to suppress the WNT-antagonists Dkk1 and Sost. In

contrast, gp130 expression by osteocytes is not required for

PTH to stimulate mRNA levels of the pro-osteoclastogenic

factors RANKL (Tnfsf11) and Il6 in bone.
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0424 Printed in Great Britain
The stimulatory effect of PTH on trabecular osteoblast

numbers and mineralizing surface was completely ablated

in Dmp1Cre.gp130f/f mice. This may, at least partly, be

explained by the lack of a reduction in both WNT

signaling inhibitors Sost and Dkk1 in response to PTH.

WNT signaling stimulates osteoblast differentiation, and

it has been postulated that this is one pathway through

which PTH stimulates bone formation (Kulkarni et al.

2005), a hypothesis supported by impaired PTH responses

in mice overexpressing sclerostin or Dkk1 (Guo et al. 2010,

Kramer et al. 2010). PTH directly inhibits Sost via

cAMP–PKA signaling (Keller & Kneissel 2005). The IL-6

family cytokines also rapidly inhibit Sost, although the

mechanism remains unknown (Walker et al. 2010).

Whether the reduction in the effect of PTH on WNT

signaling is entirely due to the reduced PTH1R expression

or results from some dependence on gp130 cytokines

by this same pathway in osteoblasts and osteocytes

remains unclear.

In contrast to the effect on WNT-antagonists, both

Dmp1Cre.gp130w/w and Dmp1Cre.gp130f/f mice demon-

strated increased femoral Tnfsf11 and Il6 mRNA levels

in response to PTH. Despite these increases in both

genotypes, osteoclast numbers were unchanged, as we

have previously reported with this low dose of inter-

mittent PTH treatment (Takyar et al. 2013, Tonna et al.

2014), likely because the inductions of Tnfsf11 and Il6

are transient (Ma et al. 2001, Walker et al. 2012). IL-6 and

RANKL are expressed by a wide range of cells in the bone,

including osteoblast lineage cells as well as osteocytes

(Lee & Lorenzo 1999, Dai et al. 2006, Nakashima et al.

2011, Xiong et al. 2011), and cells within the bone

marrow, including T-cells (Horwood et al. 1999, Hirano

et al. 1986) and, in the case of IL-6, macrophages (Tosato

et al. 1988). Although PTH has recently been suggested to

directly promote RANKL expression in osteocytes (Xiong

et al. 2011), our findings suggest that the major cellular

targets that produce these pro-osteoclastogenic factors in

response to PTH are not osteocytes. Notably, although

PTH was unable to increase osteoblast numbers or

mineralizing surface in the Dmp1Cre.gp130f/f mice, on

those surfaces where double calcein labels were incorpor-

ated into the bone matrix, the distance between them

(MAR) was significantly greater in PTH-treated mice,

regardless of genotype. This suggests that bone-forming

osteoblasts in Dmp1Cre.gp130f/f mice retain sufficient

PTHR expression to respond to PTH with increased matrix

production. Since marrow was flushed from the femora,

and Pth1r levels were dramatically reduced in undiffer-

entiated cultured Cre-expressing cells, we suggest that the
Published by Bioscientifica Ltd.
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key PTH-responsive cells producing RANKL and IL-6 in

this model are less differentiated osteoblasts, not expres-

sing DMP1Cre, on the bone surface.

Pth1r mRNA was lower in cortical bone of

Dmp1Cre.gp130f/f mice compared with littermate con-

trols, an effect that was reproduced when gp130 was

deleted in cultured primary calvarial osteoblasts. There

are two ways to understand this: firstly, as osteoblast

differentiation is impaired in the Dmp1Cre.gp130f/f mice

(Johnson et al. 2014b) and PTH1R expression in the

osteoblast lineage is higher in more mature osteoblasts

(Allan et al. 2003, 2008, Balic et al. 2010), there may be

fewer mature PTH1R-expressing osteoblasts present

within the bone of these mice. Another interpretation is

that gp130 is needed to maintain the expression of

PTH1R in the osteoblast lineage. This latter hypothesis is

supported by our in vitro data, as we observed that a

reduction in gp130 by about 50% in calvarial osteoblasts

cultured in vitro reduced Pth1r mRNA levels by nearly

80%. This further suggests that, as well as maintaining

PTH1R levels in the osteocyte, gp130 may maintain

PTH1R expression throughout the osteoblast lineage.

Although Pth1r levels were low in the femora

of Dmp1Cre.gp130f/f mice, their phenotype is strikingly

different to mice with a conditional deletion of Pth1r

in osteocytes (Ocy-PPRKO), generated using the same

Dmp1Cre (Saini et al. 2013). Ocy-PPRKO mice showed

a greater trabecular bone mass than controls, with no

significant alteration in osteoblast numbers, indicating

that the underlying cause of bone fragility in the

Dmp1Cre.gp130f/f mice is not simply low PTH1R

expression in the osteocyte. As observed in

Dmp1Cre.gp130f/f mice, Ocy-PPRKO mice failed to reduce

Sost in response to PTH treatment. However, in direct

contrast to Dmp1Cre.gp130f/f mice, Ocy-PPRKO mice

lacked a Tnfsf11 in response to PTH. This suggests that

the Dkk1/Sost and Tnfsf11/Il6st responses to PTH occur in

different cell populations, and it is only the former that is

affected by Dmp1Cre-mediated gp130 deletion. Alterna-

tively, the Dkk1/Sost induction may require a higher level

of PTH1R expression than the Tnfsf11/Il6st response; the

low level of PTH1R expression in the Dmp1Cre.gp130f/f

mice may be sufficient for the latter.

In addition to mediating the response of osteoblasts

to exogenous PTH treatment, PTH1R also acts as a

receptor for PTH-related protein (PTHrP). Although first

identified as the mediator of humoral hypercalcemia

of malignancy (Suva et al. 1987), PTHrP is also produced

by the osteoblast lineage (Kartsogiannis et al. 1997). This

local PTHrP production is essential for normal osteoblast
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0424 Printed in Great Britain
differentiation, as indicated by studies of an osteoblast-

lineage PTHrP-null mice (Miao et al. 2005). This suggests

that basal defects in osteoblast differentiation in our

model lacking gp130 in osteocytes may relate specifically

to a lack of PTHrP signal. Notably, and in direct contrast

to our model, the osteoblast-lineage knockout of PTHrP

also exhibited a significant impairment in osteoclasto-

genesis (Miao et al. 2005), a finding that may relate to

the difference in the gene-driving expression of the

Cre-recombinase. The Pthrpf/f deletion was driven by the

Col2.3Cre, which would delete expression in osteocytes,

but also in less mature osteoblasts than the Dmp1Cre that

we have used. Again, this suggests that the PTH-induced

expression of RANKL is likely to occur in less mature

osteoblasts.

In conclusion, in addition to the recently described

role of osteocytic gp130 in maintaining bone formation

and strength (Johnson et al. 2014b), the current study has

revealed a new role for gp130 in the osteoblast lineage in

bone: it is needed to maintain PTH1R expression and

to increase osteoblast numbers in response to anabolic

PTH treatment.
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